
International Journal of Electronics Engineering, 1(2), 2009, pp. 209-213

Modified Architectural Support for Predicate Execution of

Instruction Level Parallelism

Sweta1, Dr. Ranjit Biswas2 & Prof. J. B. Singh3

1Research Scholar, Shobhit University
2Prof. (CSE/IT) ITM, Gurgaon

3Prof. (CSE/IT) Shobhit University

Abstract: Utilizing speculative execution alone to extract instruction level parallelism in the presence of branches has
performance limitation .The fundamental limitation is that speculation eliminates dependencies between instructions and
branches, but does not remove the branches themselves. To overcome this drawback, predicate execution is investigated.
Predicate or guarded execution enables a compiler to eliminate branches from the instruction stream. As a result, many of
the difficulties introduced by branches can be eliminated. This paper addresses the architectural support required to accomplish
predicate execution. The architectural extensions required to provide efficient support for the predicated execution are
discussed.

Keywords: Instruction Level Parallelism, Nullification Model, Very Long Instruction Word.

1. INTRODUCTION

Predicate execution refers to the conditional execution of
the instructions based on the value of a Boolean source
operand, referred to as the predicate. If the value of the
predicate is true (a logic 1), the instruction is allowed to
execute normally; otherwise (a logic 0), the instruction is
nullified, preventing it from modifying the processor state.

bgt in Figure 1.2 is replaced by a predicate define instruction,
pgt, in Figure 1.3.

for (i=0; i<=100; i++)
if (a[i]<=50)
j=j+1;
else
k=k+1;

Figure 1: 1 Source Code Segment of if-conversion

Figure 1.1, Figure 1.2, Figure 1.3 contains an example
to illustrate the concept of predicated execution [5]. For each
iteration of the loop in Figure 1.1, either the value of j or k
is conditionally incremented. The basic compiler
transformation to exploit predicated execution is known as
if-conversion [1]. If-conversion replaces conditional
branches in the code with comparison instructions that
define one or more predicates. Instructions control
dependent on the branch are then converted to predicated
instructions, utilizing the appropriate predicate value [7].
In this manner, control dependences are converted to data
dependences. Figure 1.2 and Figure 1.3, shows the assembly
code for the loop example before and after if-conversion.

Note that the variables j and k have been placed in
register r5 and r6, respectively. The first conditional branch

mov r1 ,0
mov r2,0
id_i r3 , a,0
L1:
Id_i r4, r3,r2
bgt r4 , 50, L2
add r5,r5,1
Jump L3
L2:
add r6,r6,1
L3:
add r1,r1,1
add r2,r2,4
bit r1,100, L1

Figure 1.2: Assembly Code Segment of if-conversion

mov r1,0
mov r2,0
Id_i r3,A,0
L1:
Id_i r4,r3,r2
pgt p1(U),p2(U),r4,50
add r5,r5,1 (p2)
add r6,r6,1 (p1)
add r1,r1,1
add r2,r2,4
bit r1,100,L1

Figure 1.3: Assembly Code Segment After if-conversion

210 International Journal of Electronics Engineering

loops and sets the predicate controlling the next iteration
by comparing the contents of a loop iteration counter to the
loop bound [3].

Figure 1.4, shows the previous example after if-
conversion for the Cydra 5, to set the mutually exclusive
predicates for the different execution paths shown in this
example requires three instructions.

First, a comparison must be performed followed by a
stuff to set the predicate register for the true path (predicate
on p1) and a stuff_bar to set the predicate register for the
false path (predicate on p2). This result in a minimum
dependence distance of 2 from the comparison to the first
possible reference of the predicate being set.

In Cydra 5, predicate execution is integrated into the
optimized execution of modulo scheduled inner loops to
control the prologue, epilogue, and iteration initiation.
Predicate execution also allows loops with conditional
branches to be efficiently modulo scheduled.

2. ARCHITECTURAL SUPPORT FOR PREDICATE
EXECUTION

The hardware must support for predicated execution, some
special architectural support is also required. The hardware
must allocate enough spaces to store the predicated values.
Even though the existing general purpose registers can be
used to store these values, there are two problems of using
general purpose registers. Firstly, each predicate value
requires only 1 bit. Therefore, storing the value in a typical
32-bit general purpose register can be very wasteful.
Secondly, because many of the predicate values and their
complementary values are used, more efficient and
convenient hardware support should be used to represent
the complementary values. A new predicate register file
design is discussed to address these problems.

Another hardware support includes providing some new
instruction to set these predicate registers. These predicate
registers are used by all instructions; thus, an extension has
to be added to the instruction field to specify a predicate
register. Lastly, the hardware must contain some logic to
nullify any side effects of the instruction if the instruction
is not supposed to be executed.

(Proposed Problem)

2.1. A Micro Architecture Model

A Micro architecture is composed of the processor,
instruction cache and data cache sharing a common memory
data bus, and the main memory subsystem. The processor
supports in-order issue to the fully pipelined functional units.
Each functional unit may contain up to one of each of the
following: an integer unit, a floating-point unit, and load-
store unit. A realistic memory subsystem is modeled to
accurately show the benefits and disadvantages of new
compiler techniques and architectural support. Figure 1.5
shows the five-stage pipeline including instruction fetch (IF),

The predicate p1 is assigned the value 1 if r4 > 50 and
0 otherwise. The predicate p2 is assigned the complement
of p1. The instructions incrementing the value of r5 and r6
are converted to predicated instructions, associated with
predicates p1 and p2 respectively. For each loop iteration,
either r5 or r6 will be incremented by the predicated add
instructions, contingent on the results of the predicate define
instruction. The jump instruction becomes unnecessary after
if-conversion.

1.1. Predicated Execution Support in Cydra 5

The Cydra 5 system is a VLIW [9], multiprocessor system
utilizing a directed dataflow architecture. Each Cydra 5
instruction word contains seven operations, each of which
may be individually predicated. An additional source
operand added to each operation specifies a predicate located
within the predicate register file. The predicate register file
is an array of 128 Boolean (one bit) registers. Within the
processor pipeline after the operand fetch stage, the predicate
specified by each operation is examined. If the content of
the predicate register is one, the instruction is allowed to
proceed to the execution stage: Otherwise, it is squashed.
Essentially, operation whose predicates are zero are
converted to no-ops prior to entering the execution stage
pipeline. The predicate specified by an operation must thus
be known by the time the operation leaves the operand fetch
stage.

mov r1,0
mov r2,0
Id_i r3,A,0
L1:
Id_i r4,r3,r2
gt r6,r4,50
stuff p1,r6
stuff_bar p2,r6
add r5,r5,1 (p2)
add r6,r6,1 (p1)
add r1,r1,1
add r2,r2,4
bit r1,100, L1

Figure 1.4: If-then-else Predication in Cydra 5

The content of a predicate register may only be modified
by one of three operations: stuff, stuff_bar or brtop. The
stuff operation takes as operands a destination predicate
register and a Boolean value as well as an input predicate
register. The Boolean value is typically produced using a
comparison operation . If the input predicate register is one,
the destination predicate register is assigned the Boolean
value. Otherwise, destination predicate is assigned to 0. The
stuff bar operation functions in the same manner, except
the destination predicate register is set to the inverse of the
Boolean value when the input predicate value is one. The
brtop operation is used for loop control in software pipelined

Modified Architectural Support for Predicate Execution of Instruction Level Parallelism 211

(Proposed Work)

3.2. Micro–architecture Extensions

To support predicate execution, some modifications to the
baseline architecture has been presented. These extensions
are broadly broken down into two categories: the
nullification mechanism and the predicate register file.

3.2.1. Nullification Mechanism

The predicate of each instruction determines its execution
state. If predicate is 1, or true, the instruction is executed
normally; if the value is 0, or false the effect of the
instruction are nullified. In general, nullification may be
accomplished at any point in the processor pipeline before
the register file or memory system is modified.

The earliest an instruction may be nullified is during
the decode/issue stage. After fetching the value of an
instruction’s predicate, the instruction is I simply not issued
if its predicate is 0. This has the advantage of the allowing
the execution unit to be allocated to other operations. Thus,
for critical resources such as divide units, a nullified
instruction will never tie it up unnecessarily. Also, for
nullified load instructions, superfluous cache and TLB
misses will never be generated. On the negative side, the
value of the predicate register referenced must be available
during decode/issue, so the predicate register must at least

3. INSTRUCTION SET

Cydra 5 style of supporting full predication is chosen for
the micro architecture model. Full predication offers the
most efficient and flexible paradigm to support predicate
execution. As a result, all instructions in the instruction set
architecture are augmented with an additional source
operand to hold a predicate specifier. In this manner, every
instruction may be predicated. Predicate values are
maintained in an N X 1 predicate register file. Predicates
are manipulated via a new set of instructions are added to
the baseline architecture. These instructions are classified
as Predicate comparison instructions, predicate clear/set
instructions and predicate save/restore instructions.

3.1. Predicate Comparison Instructions

The predicate comparison semantics [5] used and they are
HPL, PlayDoh architecture. Predicate Comparison
instruction compute predicate values using semantics similar
to those for conventional comparison instructions. There is
one predicate comparison instruction for each integer,
unsigned, float, and double comparison opcode in the
original instruction set. The major difference is that these
instructions have up to two destination registers and these
destination registers are in the predicate register file. The
predicated comparison instruction format is shown below:

instruction decode/issue (ID), instruction execute (IE),
memory access (MA) and write-back/retire (WBR) to
explain the execution path of instructions .

Figure1.5: Pipeline Diagram for the Micro Architecture

Instruction Fetch

Instruction decode

Instruction execute

Operand fetch/
access

Memory

Write Back/Result
Commit

P<cmp>Pout1(<type>), Pout2(<type>), src1, src2(Pin)

This instruction assigns values to Pout1 and Pout2 according
to a comparison of src1, src2 specified by <cmp>. The
comparison <cmp>can be: equal (eq), not equal (ne), greater
than (gt) etc. A predicate <type> is specified for each
destination predicate. Predicate defining instructions are also
predicated as determine by Pin.

The predicate <type> determines the value written to
the destination predicate register based upon the result of
the comparison and of input predicate, Pin. For each
combination of comparison result and Pin, one of three
actions may be performed on the destination predicate.
It can write 1, write 0, or leave it unchanged, indicated by
a”-”. Thus, a total of 34 = 81 possible type exist. There
are six predicate types that are particularly effective,
unconditional (U) , OR-type (OR), and AND–type (AND)
predicates and their complements.

Pin Comparison Pout

U U OR

OR

AND

AND

0 0 0 0 - - - -

0 1 0 0 - - - -

1 0 0 1 - 1 0 -

1 1 1 0 1 - - 0

Figure 1.6 truth Table for predicate types.

212 International Journal of Electronics Engineering

be sent in the previous cycle. This dependence distance may
also be larger for deeper pipelines or if bye pass is not
available for predicate registers. Increasing the dependence
distance between definitions and uses of predicates may
adversely affect execution time by 7 lengthening the
schedule for the predicate code. This nullification model is
utilized in CYDRA 5.

The other extreme for nullification is to allow the
instruction to execute almost to completion , but to disallow
any change of processor state in the write-back stage of the
pipeline. Therefore, for instructions that write their result
into the register file, this update must be suppressed. For
store instructions, they must be prevented from entering the
store buffer. This method is useful since it reduces the
latency between an instruction that modifies the value of
predicate register and a subsequent instruction which is
conditioned based on that predicate register. This reduced
latency enables more compact schedules to be generated
for the predicated code. A drawback of this method is that
regardless of whether an instruction is suppressed, it still
ties up an execution unit. This method is also likely to
increase the complexity of the register bypass logic and force
exception signaling to be delayed until the last pipeline stage.

Hybrid nullification schemes are also possible and
become more appealing for deeply pipelined machines to
balance the effect of both extremes. For the current
architecture, nullification at the decode/issue stage is chosen.
The architecture contains a very short pipeline(five stages)
and the reduced design complexity makes this the preferred
choice. Also, it is believed that the negative of increased
independence height incurred by this approach can be
overcome with compiler transformations such as predicate
promotion.

3.2.2. Predicate Register File

An N X 1 register file is used to hold predicate is added to
the baseline architecture. The choice of introducing a new
register file to hold predicate values rather than using the
existing general purpose register file was made for several
reasons. First, it is inefficient to use a 32 bit general register
to hold a one bit predicate. Second, register porting is
expected to be a significant problem for wide–issue
processors. By keeping predicates in a separate file,
additional port demands are not added to the general purpose
register file, within the architecture, the predicate register
file behaves no differently than a conventional register file.
For example, the contents of the predicate register file must
be saved during a context switch. Further more, the predicate
file is partitioned into caller and callee saves section based
on the chosen calling convention.

3.2.3. Predicated Execution for Out-of-order Issue
Processors

Superscalar processors employing out-of-order execution
via an algorithm, such as the Tomasulo algorithm, faces new

One potential solution is not to allow instruction B to
place its tag in its destination register unless its predicate is
true. The problem with this is that much of the out-of-order
execution capabilities of the processor are lost. With this
solution, the processor must stall whenever the predicate of
an instruction is available, whereas the underlying principle
of out-of-order execution is to continue issuing instruction
regardless if their source operands are available. The
instruction not ready wait in reservation stations allowing
ready instructions to bypass them. Therefore, much of the
out-of-order performance potential is sacrificed with this
scheme

4. CONCLUSION AND DISCUSSION

Predicate execution supports provides an effective means
to completely eliminate branches from an instruction stream
. Predicated or guarded execution refers to the conditional
execution of an instruction based on the value of a Boolean
source operand, referred as the predicate of the instruction.
This architectural support allows the compiler to use an if-
conversion algorithm to convert conditional branches into
predicate defining instruction and instruction along
alternative paths of each branch into predicated instructions.
Predicated instruction are fetched regardless of their
Predicated value. Instruction whose predicate value is true
are executed normally. Conversely, instruction whose
predicate is false are nullified, and thus are prevented from
modifying the processor state. Predicated execution allows
the compiler to trade instruction fetch efficiency for the
capability to expose IPL to hardware along multiple
execution paths.

REFERENCES

[1] V. Aho, R. Sethi and J. D. Ullman, “Compilers: Principles,
Techniques, and Tools”, Addison-Wesley Publishing
Company, (1986).

problem with predicated execution. The problems mainly
stem from the tagging mechanism used to forward results
to instructions waiting in the reservation stations.

The Figure1.7, shows the execution of the code stream.
When instruction A is issued, it deposits tag A into its
destination register, again r1. Next instruction B is issued,
thereby writing tag B into its destination register, again r1.
Now, when the operands for instruction C are fetched, the
producer of its source operand, r1, is assumed to be the last
instruction to write to r1, namely instruction B. In the cases
in which the predicate of instruction B is false, no result
will be forwarded to instruction C, which causes an error.

A: Id_i,r1,r2,r3
B: add r1,r4,r5 (p1)
C: Id_i r6,r1,0

Figure 1.7: Example of the Tagging Problem with Out-of-order.

Modified Architectural Support for Predicate Execution of Instruction Level Parallelism 213

[2] R. P. Colwell et al., “A VLIW Architecture for a Trace
Scheduling Compiler”, IEEE Trans. on Computers, (1988).

[3] Subramanian Rajagopalan, Sreeranga P. Rajan, Sharad
Malik, Sandro Rigo, Guido Araujo, and Koichiro Takayama,
“A Ratargetable VLIW Compiler: Framework for DSP with
Instruction Level Parallelism”, IEEE Transactions on
Computer–Aided Design of Integrated Circuits and Systems,
20, (11), (2001).

[4] Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju,
and Jenq Kuen Lee, “Interprocedural Probabilistic Pointer
Analysis”, IEEE Transaction on Parallel and Distributed
Systems, 15, (10), (2004).

[5] “An Architecture Framework for Introducing Predicated
Execution into Embedded Microprocessors”, Daniel A.
Connors, David I. August, Kevin M. Crozier, and Wen-mei
W. Hwuand Jean-Michel Puiatti.

[6] Anantaraman A., Seth K., Patil K., Rotenberg E., Mueller

F., “Virtual Simple Architecture (VISA): Exceeding the
Complexity Limit in Safe Real-time Systems”. In:
Proceedings of the International Symposium on Computer
Architecture, (2003).

[7] Berg C., Engblom J., Wilhelm R., “Requirements for and
Design of a Processor with Predictable Timing”. In:
Proceedings of the Dagstuhl Perspectives Workshop on
Design of Systems with Predictable Behavior, (2004).

[8] Deverge J., Puaut I., “Safe Measurement-based WCET
Estimation”. In Proceedings of the Euromicro International
Workshop on WCET Analysis.

[9] Fisher J. A., Faraboschi P., Young C., “Embedded
Computing: A VLIW Approach to Architecture, Compilers,
and Tools”. Kaufmann, Los Altos, (2005).

[10] Schlansker M. et al, “Achieving High Levels of Instruction-
Level Parallelism with Reduced Hardware Complexity”.
HPL Technical Report, (1997).

